Previously, government funded programs provided spray subsidies to land managers. However, the benefits of these programs were limited due to the difficulty in achieving widespread and effective blackberry control. The National Blackberry Action Group (NEBAG) was established in 2002 to address the impacts of blackberry on agricultural productivity and biodiversity in the Upper Murray region of Victoria. NEBAG, a community-based voluntary body, was formed to provide leadership and direction to a blackberry management program. NEBAG’s objectives were to: 1. establish an action plan to address blackberry; 2. develop voluntary blackberry management agreements to manage blackberry across the region; 3. develop a quick reference guide to identify Rubus species and blackberry; 4. encourage community involvement; and 5. develop a project officer for six weeks a year who undertakes blackberry control and manages community activities. The North East Blackberry Action Group (NEBAG) was formed in 2004, and receives funding from landholders and government agencies. In 2008, NEBAG covered 120,000 hectares, and had a membership of 258 landholders. A project officer was employed by the group and provided support to land managers. NEBAG’s success was due to the commitment and persistence of community members. NEBAG developed voluntary blackberry management agreements that were supported by landholders and government agencies. The agreements were developed through community workshops, and provided an opportunity to negotiate blackberry control, and these can be negotiated between landholders and project officer.

NEBAG has been very successful in achieving widespread blackberry control. NEBAG achieved 100% participation from landholders, and therefore held little responsibility for the wider management of blackberry. The blackberry control effort is paying off. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work. NEBAG has been successful in achieving widespread blackberry control. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work. NEBAG has been successful in achieving widespread blackberry control. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work. NEBAG has been successful in achieving widespread blackberry control. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work. NEBAG has been successful in achieving widespread blackberry control. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work. NEBAG has been successful in achieving widespread blackberry control. NEBAG has treated 15,000 hectares and a 40 percent reduction in infestations has been achieved. The project officer and land manager also received spray subsidies but not carried out the work.

The Blackberry Control Brochure has been developed on NEBAG, to view this please visit www.weeds.org.au/WoNS. A documentary has been developed on NEBAG, to view this please visit www.blackberryactiongroup.com.au.
Developing a blackberry management plan

There are three key factors to developing a management plan and actively working towards Blackberry management:

1. Plan, casual and engaging.
2. Protect the area from management.
3. Process, deployment and implementation of integrated control measures.

1. Monitor, weed, control and rehabilitate.

As a general rule of thumb, given that about five per cent of establishment effort is required to achieve control, we recommend:

2. Set realistic and measurable goals.
3. Prioritise the areas for management.
4. Prepare, document and implement an integrated management plan.

There are five main steps to developing a management plan:

1. Blackberry can be a thorny problem to manage, so it is essential to understand the biology and history of the species. It is important to understand how blackberries spread and the various control methods available.

2. Different Rubus species may have different management options and resources available, so it is essential to understand the biology and history of the species.

3. Different Rubus species have different control options and resources available, so it is essential to understand the biology and history of the species.

4. Different Rubus species may have different control options and resources available, so it is essential to understand the biology and history of the species.

5. Different Rubus species may have different control options and resources available, so it is essential to understand the biology and history of the species.

Blackberry control practices

Blackberry is able to reproduce and spread both by seed and vegetatively. It is a long-lived perennial plant, with a deep and extensive root system. The weed can colonise disturbed sites and areas that are difficult to control with herbicides. The control of blackberry is a long-term process and requires ongoing attention. The blackberry control plan is a common component of integrated weed management programs. The plan should include the following:

1. The weed control plan should be reviewed and updated regularly.

2. The weed control plan should be reviewed and updated regularly.

3. The weed control plan should be reviewed and updated regularly.

4. The weed control plan should be reviewed and updated regularly.

5. The weed control plan should be reviewed and updated regularly.

Burning

Burning is a very effective control method for blackberry, but it is not a one-off solution. It is important to understand how blackberries spread and the various control methods available.

1. Burning is a very effective control method for blackberry, but it is not a one-off solution.

2. Burning is a very effective control method for blackberry, but it is not a one-off solution.

3. Burning is a very effective control method for blackberry, but it is not a one-off solution.

4. Burning is a very effective control method for blackberry, but it is not a one-off solution.

5. Burning is a very effective control method for blackberry, but it is not a one-off solution.

Biological control

Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution. It is important to understand how blackberries spread and the various control methods available.

1. Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution.

2. Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution.

3. Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution.

4. Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution.

5. Biological control is a cost-effective method of controlling blackberry, but it is not a one-off solution.

Physical control methods

The use of physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution. It is important to understand how blackberries spread and the various control methods available.

1. Physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution.

2. Physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution.

3. Physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution.

4. Physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution.

5. Physical control methods such as burning can be a very effective way to control blackberry, but it is not a one-off solution.

Characteristics of the K. fruticosus agg.

Rubus is the largest genus of blackberry, with over 100 species. The blackberry can be distinguished from other Rubus species by its large, glossy, dark green leaves and its large, juicy, red berries. The blackberry can also be distinguished from other Rubus species by its large, glossy, dark green leaves and its large, juicy, red berries.

1. Atkinson egg (European blackberry). Species in this aggregate are native to Europe, so are likely to be found in Australia. Rubus species are found in different parts of the world, so they are likely to be found in Australia.

2. The aggregate of Rubus species in this area originates from North America or Asia. This means that they are likely to be found in Australia.

3. There are 26 introduced Rubus species that are likely to be found in Australia. This means that they are likely to be found in Australia.

4. There are 26 introduced Rubus species that are likely to be found in Australia. This means that they are likely to be found in Australia.

5. There are 26 introduced Rubus species that are likely to be found in Australia. This means that they are likely to be found in Australia.

Stems: erect to semi-erect and arching or trailing. Green, brown or black. Elliptical to oval, and up to 200 cm in length. Leaf shapes and leaflet arrangements.

R. fruticosus var. anoplothyrus (Birgitte Verbeek, NSW DPI).

Seed results in blackberries in a very green underwater aggregate.

- Leaves: glossy, dark green, elliptical to oval, up to 200 cm in length.
- Flowers: white or pink and 2–3 cm in diameter.
- Fruits: 1–3 cm diameter berry, which changes colour from green to red.
- Flowering period: late November to late February (Birgitte Verbeek, NSW DPI).

- Seeds: round, black, hard, and up to 1 cm in diameter.
- Root system: deep, and up to 1 m in length.
-PROPAGATION: seed and vegetatively. It has a perennial root system

Burning

Burning is a very effective control method for blackberry. It is not a one-off solution. It is important to understand how blackberries spread and the various control methods available.

1. Burning is a very effective control method for blackberry. It is not a one-off solution.

2. Burning is a very effective control method for blackberry. It is not a one-off solution.

3. Burning is a very effective control method for blackberry. It is not a one-off solution.

4. Burning is a very effective control method for blackberry. It is not a one-off solution.

5. Burning is a very effective control method for blackberry. It is not a one-off solution.

1. Burning is a very effective control method for blackberry. It is not a one-off solution.

2. Burning is a very effective control method for blackberry. It is not a one-off solution.

3. Burning is a very effective control method for blackberry. It is not a one-off solution.

4. Burning is a very effective control method for blackberry. It is not a one-off solution.

5. Burning is a very effective control method for blackberry. It is not a one-off solution.
Previously, government funded programs provided spray subsidies to land managers. However, the subsidies often did not address the impacts of blackberry on agricultural productivity, and historically many regions were not targeted. The North East Blackberry Action Group (NEBAG) was established in 2008, and its role is to enable stakeholders to address the impacts of blackberry on agricultural productivity, and to develop a more sustainable community approach to addressing this issue. The group aims to encourage community involvement in addressing blackberry issues, and to develop a more effective and sustainable approach to managing blackberry problems. NEBAG identified that some of the regions with higher blackberry infestations were also those that had lower agricultural productivity. The NEBAG concluded that the low investment in land management practices was due to the lack of effective financial incentives to manage the blackberry problem. Over time the NEBAG has been able to effectively engage stakeholders in their communities, culminating in the development of blackberry management strategies. To date NEBAG has over 1,650 landholders on 26 projects working together, with over 30,000 hectares of blackberry infestations managed. NEBAG funded a project officer and land manager, which has resulted in a financial incentive for landholders to continue to manage their blackberry infestations. Project officer and land manager.

Community-led action for long term blackberry control

Community members: working together to control blackberry across a local area

Blackberry Action Group is an example of how this can be achieved.

To achieve a scope of the Blackberry Control Manual, as for further information on the Weeds of National Significance, contact Western Australia. Blackberry Control Brochure

Community-led action for long term blackberry control

Community members: working together to control blackberry across a local area

Blackberry Action Group is an example of how this can be achieved.

To achieve a scope of the Blackberry Control Manual, as for further information on the Weeds of National Significance, contact Western Australia.

References and further information

First introduced to Australia in the 1830s, Rubus fruticosus agg. (which requires protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Problems

Blackberry, a weed of National Significance

Blackberry belongs to the Rubus genus and the species Rubus fruticosus agg. It is considered a Weed of National Significance (WoNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Leaf characteristics of R. fruticosus agg. and North American Rubus species in Australia.

- a. A sample blackberry leaf from western Victoria. It has a long stem, 1 to 2 cm long. There are small stipules at the base of the leaf and leaflets are opposite each other. The leaflets are glossy and the leaf margins are serrated. The leaf is about 10 cm long.
- b. A sample blackberry leaf from the north-east of Victoria. It is about 10 cm long and has a flattened stem. The leaflets are opposite each other, the leaf margins are serrated and the leaf is glossy. The leaf is about 10 cm long.
- c. A sample blackberry leaf from the south-east of Victoria. It is about 10 cm long and has a flattened stem. The leaflets are opposite each other, the leaf margins are serrated and the leaf is glossy. The leaf is about 10 cm long.
- d. A sample blackberry leaf from the north-east of Victoria. It is about 10 cm long and has a flattened stem. The leaflets are opposite each other, the leaf margins are serrated and the leaf is glossy. The leaf is about 10 cm long.
- e. A sample blackberry leaf from the north-east of Victoria. It is about 10 cm long and has a flattened stem. The leaflets are opposite each other, the leaf margins are serrated and the leaf is glossy. The leaf is about 10 cm long.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

References and further information

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Problems

Blackberry, a weed of National Significance

Blackberry belongs to the Rubus genus and the species Rubus fruticosus agg. It is considered a Weed of National Significance (WoNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

References and further information

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Problems

Blackberry, a weed of National Significance

Blackberry belongs to the Rubus genus and the species Rubus fruticosus agg. It is considered a Weed of National Significance (WoNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Problems

Blackberry, a weed of National Significance

Blackberry belongs to the Rubus genus and the species Rubus fruticosus agg. It is considered a Weed of National Significance (WoNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

This brochure has been developed as a summary of the National Blackberry Control Manual (NSW Department of Primary Industries, Victoria). First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.

Problems

Blackberry, a weed of National Significance

Blackberry belongs to the Rubus genus and the species Rubus fruticosus agg. It is considered a Weed of National Significance (WoNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1830s, Rubus fruticosus agg. (which require protection), as well as those with blackberry, including 10 that are native to Australia. The genus comprises many different species of species within the genus may not have done so.
Characteristics of the R. fruticosus agg.

Blackberries are able to reproduce and spread both by seeds and rhizomes. In Australia, seeds may be produced from April to September, depending on the species, with R. fruticosus agg. producing seed from November to February. Seeds are small and hard, with a thick protective coating that makes germination difficult. Rhizomes arehorizontal underground stems, often more than 1 m long, that can root to form new plants. Blackberries are deciduous, with leaves that disappear in the absence of water or nutrients, leaving a bare crown. They are able to reproduce and spread both by seeds and rhizomes, with rhizomes being the primary means of spread.

Blackberry control practices

Blackberries are able to reproduce and spread both by seeds and rhizomes. In Australia, seeds may be produced from April to September, depending on the species, with R. fruticosus agg. producing seed from November to February. Seeds are small and hard, with a thick protective coating that makes germination difficult. Rhizomes are horizontal underground stems, often more than 1 m long, that can root to form new plants. Blackberries are deciduous, with leaves that disappear in the absence of water or nutrients, leaving a bare crown. They are able to reproduce and spread both by seeds and rhizomes, with rhizomes being the primary means of spread.

Controlling blackberries

There are a range of management options available for controlling blackberries in Australia. These include physical, chemical and biological control methods. Physical control methods are those that involve removing or reducing the spread of the weed, such as hand-pulling, digging, burning or cutting the plant. Chemical control methods involve the use of herbicides to kill the plants. Biological control methods involve the use of natural enemies, such as insects, to control the weed population.

Developing a blackberry management plan

There are two main steps to developing a management plan: 1) identify the species present in the area and 2) identify the most appropriate control methods. The first step is to determine the species present in the area, as this will dictate the most appropriate control methods. The second step is to determine the most appropriate control methods for the species present in the area. This will involve considering the environmental conditions, the availability of resources and the cost of control methods.

Blackberry species

There are four main groups of blackberry species in Australia: 1) R. fruticosus agg., 2) R. ananassoides, 3) R. internus and 4) R. occidentalis. Each group has different characteristics and requires different control methods. R. fruticosus agg. is the most common species in Australia and is found in a variety of environments, including coastal, woodland and farmland. R. ananassoides is found in coastal and urban environments. R. internus is found in coastal and woodland environments. R. occidentalis is found in coastal and farmland environments.

Physical control methods

Physical control methods are those that involve removing or reducing the spread of the weed, such as hand-pulling, digging, burning or cutting the plant. Physical control methods are effective in controlling blackberries, but they are often labour-intensive and require a large amount of time and resources. Physical control methods are best used in conjunction with other control methods, such as herbicides, to achieve the best results.

Chemical control methods

Chemical control methods involve the use of herbicides to kill the plants. Herbicides can be applied to the soil or foliage of the plant. There are two main types of herbicides: pre-emergent and post-emergent. Pre-emergent herbicides are applied before the plants emerge, while post-emergent herbicides are applied after the plants have emerged. Herbicides are available in a variety of formulations, including aqueous solutions and powders.

Biological control methods

Biological control methods involve the use of natural enemies, such as insects, to control the weed population. Biological control methods are effective in controlling blackberries, but they are often difficult to implement and require a large amount of time and resources. Biological control methods are best used in conjunction with other control methods, such as herbicides, to achieve the best results.

Monitoring blackberry infestations

Monitoring blackberry infestations involves the use of aerial photography, ground surveys and volunteer reports to identify and map the extent of the infestation. Monitoring blackberry infestations is essential to ensure that the right control methods are used and to assess the effectiveness of control efforts.

To determine whether the blackberries in your area should be controlled, consult the Blackberry Control Manual or the lucid key for blackberry identification (Barker and Barker, 2005). For further information on the species present in Australia, see the Blackberry Control Manual or visit the website of the Australian Blackberry Committee (www.blackberry.org.au).
Identification – understanding the blackberry genus

Blackberry, such as Rubus, are perennial, semi-woody, creeping shrubs. The terminal pedicel and rachis are usually hairy. They have a thorny habit and are related to the canine or dog rose plant. Numerous species originate from North America and Asia. This genus includes three major groups of Rubus to understand:

1. Asphalt, Rubus occidentalis
2. Other introduced Rubus from North American or Asian origin. This means that introduced species belong to the genus, are perennial, semi-woody, forming impenetrable thickets several stems (canes) form impenetrable thickets several
3. Native Rubus: These species vary in many details, including leaf shape, flower and fruit size.

Here are some of the main points to consider when identifying blackberry species:

- Species react differently to control
- Rubus fruticosus agg (European blackberry). Species R. fruticosus var. idaeus: erect to semi-erect and arched or trailing. Green, to red to black as it ripens and produce seed. Fruit are found in clusters, and green leaves in pairs or three, with a bright green underside
- Flowers: white or pink and 2–3 cms in diameter. Footing
- Leaves: usually dark green on top with a lighter green underside

There are a range of management options available, suitable will depend on a range of site factors

There are five main steps to developing a management plan:

1. Assess, record and map the problem
2. Prepare, document and implement an integrated management program involving a range of control strategies.
3. Set realistic and measurable goals
4. Monitor, record, retreat and rehabilitate

There are a range of techniques available to assist in the management of blackberry. The choice of technique will depend on a number of factors including the size of the infestation, your control goals, and climate. To determine whether biological control might be a suitable option in your situation, visit the Blackberry Control Manual.

Different blackberry species react differently to control

- Herbicides: These are effective tools for controlling blackberry. Selection of the most appropriate herbicide should be made as part of an integrated control program, and will depend on a range of factors, including the size of the infestation, your control goals, and climate. To determine whether biological control might be a suitable option in your situation, visit the Blackberry Control Manual.

- Burning: Burning will kill blackberry. Amended evidence suggests that the best results are obtained by allowing the seedbeds to become dormant, then rejuvenating and reinvigorating the growth. This can be done by using a small blackberry application and applying a full application at appropriate time.

- Slashing: This is a method of cutting through the root system and with powdery summer spores (bottom) (CSIRO Entomology). Phragmidium violaceum

- Cultivation: This is a method of cutting through the root system and with powdery summer spores (bottom) (CSIRO Entomology). Phragmidium violaceum

- Physical control methods

The use of physical control methods, especially burning, is often an effective way of controlling blackberry. It is also important to note that blackberry will grow in areas that are difficult to access, even when the opportunities are removed. It is important to remember that control methods should be appropriate for the infestation, including the size of the infestation, your control goals, and climate. To determine whether biological control might be a suitable option in your situation, visit the Blackberry Control Manual.
Developing a blackberry management plan

The PBSs need to develop a management plan and action list based on blackberry management. The plan should address:

1. Planting, control and Nagita (management and control options for Rubus spp.) in Australia).
2. Other introduced Rubus spp. (North American and Asian species). There are 32 introduced Rubus spp. in Australia, but only 11 are considered as significant weeds. The blackberry (Rubus fruticosus agg.) is the most widespread and invasive species. Sixteen of the introduced species are found in Australia and 10 native species are found in the bush (including leaf shape, flower and fruit colour). R. fruticosus is distinguished from other species by its large leaves and thorny stems.

Rubus spp. can vary in appearance and size, and different species can be difficult to distinguish from one another. Their general characteristics are highlighted below.

- **Leaves**: The leaves of Rubus spp. can vary in size and shape, from small to large and ovate to oblong. They are usually compound and have a central leaflet and several lateral leaflets.
- **Stems or canes**: Some species have thorny stems, while others are smooth. The stems can vary in size, from thin to thick.
- **Flowers**: The flowers of Rubus spp. are usually white or pink and 2–3 cm in diameter. They are usually solitary or in small clusters.
- **Fruit**: The fruit of Rubus spp. is usually a berry, which can vary in size and color. The berries are usually edible and can be used for cooking or baking.

It is important to identify any areas that require control, as the effectiveness and suitability of control methods will depend on the type of site factors considered.

There are four key stages in developing a blackberry control plan:

1. Assess, record and map the problem
2. Set realistic and measurable goals with the need for control
3. Prioritise the areas for management
4. Monitor, record, retreat and rehabilitate

- **Control with herbicides**: Herbicides are effective tools for controlling blackberry infestations. A range of herbicides should be used as part of an integrated weed management program to achieve local eradication. However, herbicides can vary in their effectiveness and suitability, depending on the situation.

- **Burning**: Burning is a tool that can only be effective when combined with other control methods. It may be useful for inaccessible areas or when other techniques are not feasible.

- **Hand and mechanical removal**: Manual removal can be successful if enough of the root system is removed, but it is very time-consuming and labor-intensive.

Physical control methods

The use of physical control methods often achieves better results than chemical methods, even when the latter are improperly applied. The following are some of the best physical control methods:

1. **Hand and mechanical removal**
2. **Cutting**: Cutting is effective for small infestations or when the root is not deep, but it may not be effective for larger infestations.
3. **Burning**: Burning is effective for small infestations, but it may not be effective for larger infestations.
4. **High-impact water spraying**: High-impact water spraying is effective for small infestations, but it may not be effective for larger infestations.

Biological control

Biological control is an effective method of controlling blackberry infestations. A range of biological control methods should be used as part of an integrated weed management program to achieve local eradication. However, biological control methods can vary in their effectiveness and suitability, depending on the situation.

There are a number of management options available for biological control.

1. **Seedling recruitment and increased growth owing to the plant with a stronger root system and little top growth, reducing the effectiveness of any follow-up treatment.**
2. **Ongoing follow-up treatment and rehabilitation**
3. **Accessibility is often an issue for blackberry control. Tracks and roads that are used by vehicles are also an issue.**
4. **Blackberry Control Manual**

Characteristics of the R. fruticosus agg.

Blackberry, or the Rubus genus, is a perennial, semi-woody, spreading shrub. The leaves are compound and have a central leaflet and several lateral leaflets. The flowers are usually white or pink and 2–3 cm in diameter. The berries are usually ripen in late December to April (Birgitte Verbeek, NSW DPI).

Blackberry control practices

Blackberry is an able repeater and spread rapidly to a seed and reproduce. It is not a plant that can be controlled with herbicides only. The blackberry plant is a blackberry infestation has been cleared away. The blackberry post-control is a common aggregate as it is a long-term process. The most effective method of controlling blackberry is to remove the plants at ground level, as well as any seeds or seedlings produced. There are a number of management options available for controlling blackberry infestations.

1. **Large earthmoving equipment**
2. **Cutting**
3. **Burning**
4. **Herbicides**

Identifying the Rubus species

Blackberry, or the Rubus genus, is a perennial, semi-woody, spreading shrub. The leaves are compound and have a central leaflet and several lateral leaflets. The flowers are usually white or pink and 2–3 cm in diameter. The berries are usually ripen in late December to April (Birgitte Verbeek, NSW DPI).

Different Rubus spp. species have different characteristics, which can be used to identify them. The following are some of the key characteristics of the Rubus genus:

1. **Leaves**: The leaves of Rubus spp. can vary in size and shape, from small to large and ovate to oblong. They are usually compound and have a central leaflet and several lateral leaflets.
2. **Stems or canes**: Some species have thorny stems, while others are smooth. The stems can vary in size, from thin to thick.
3. **Flowers**: The flowers of Rubus spp. are usually white or pink and 2–3 cm in diameter. They are usually solitary or in small clusters.
4. **Fruit**: The fruit of Rubus spp. is usually a berry, which can vary in size and color. The berries are usually edible and can be used for cooking or baking.

It is important to identify any areas that require control, as the effectiveness and suitability of control methods will depend on the type of site factors considered.

There are four key stages in developing a blackberry control plan:

1. Assess, record and map the problem
2. Set realistic and measurable goals with the need for control
3. Prioritise the areas for management
4. Monitor, record, retreat and rehabilitate

- **Control with herbicides**: Herbicides are effective tools for controlling blackberry infestations. A range of herbicides should be used as part of an integrated weed management program to achieve local eradication. However, herbicides can vary in their effectiveness and suitability, depending on the situation.

- **Burning**: Burning is a tool that can only be effective when combined with other control methods. It may be useful for inaccessible areas or when other techniques are not feasible.

- **Hand and mechanical removal**: Manual removal can be successful if enough of the root system is removed, but it is very time-consuming and labor-intensive.

Physical control methods

The use of physical control methods often achieves better results than chemical methods, even when the latter are improperly applied. The following are some of the best physical control methods:

1. **Hand and mechanical removal**
2. **Cutting**: Cutting is effective for small infestations or when the root is not deep, but it may not be effective for larger infestations.
3. **Burning**: Burning is effective for small infestations, but it may not be effective for larger infestations.
4. **High-impact water spraying**: High-impact water spraying is effective for small infestations, but it may not be effective for larger infestations.

Biological control

Biological control is an effective method of controlling blackberry infestations. A range of biological control methods should be used as part of an integrated weed management program to achieve local eradication. However, biological control methods can vary in their effectiveness and suitability, depending on the situation.

There are a number of management options available for biological control.

1. **Seedling recruitment and increased growth owing to the plant with a stronger root system and little top growth, reducing the effectiveness of any follow-up treatment.**
2. **Ongoing follow-up treatment and rehabilitation**
3. **Accessibility is often an issue for blackberry control. Tracks and roads that are used by vehicles are also an issue.**
4. **Blackberry Control Manual**

Characteristics of the R. fruticosus agg.

Blackberry, or the Rubus genus, is a perennial, semi-woody, spreading shrub. The leaves are compound and have a central leaflet and several lateral leaflets. The flowers are usually white or pink and 2–3 cm in diameter. The berries are usually ripen in late December to April (Birgitte Verbeek, NSW DPI).

Different Rubus spp. species have different characteristics, which can be used to identify them. The following are some of the key characteristics of the Rubus genus:

1. **Leaves**: The leaves of Rubus spp. can vary in size and shape, from small to large and ovate to oblong. They are usually compound and have a central leaflet and several lateral leaflets.
2. **Stems or canes**: Some species have thorny stems, while others are smooth. The stems can vary in size, from thin to thick.
3. **Flowers**: The flowers of Rubus spp. are usually white or pink and 2–3 cm in diameter. They are usually solitary or in small clusters.
4. **Fruit**: The fruit of Rubus spp. is usually a berry, which can vary in size and color. The berries are usually edible and can be used for cooking or baking.

It is important to identify any areas that require control, as the effectiveness and suitability of control methods will depend on the type of site factors considered.

There are four key stages in developing a blackberry control plan:

1. Assess, record and map the problem
2. Set realistic and measurable goals with the need for control
3. Prioritise the areas for management
4. Monitor, record, retreat and rehabilitate

- **Control with herbicides**: Herbicides are effective tools for controlling blackberry infestations. A range of herbicides should be used as part of an integrated weed management program to achieve local eradication. However, herbicides can vary in their effectiveness and suitability, depending on the situation.

- **Burning**: Burning is a tool that can only be effective when combined with other control methods. It may be useful for inaccessible areas or when other techniques are not feasible.

- **Hand and mechanical removal**: Manual removal can be successful if enough of the root system is removed, but it is very time-consuming and labor-intensive.

Physical control methods

The use of physical control methods often achieves better results than chemical methods, even when the latter are improperly applied. The following are some of the best physical control methods:

1. **Hand and mechanical removal**
2. **Cutting**: Cutting is effective for small infestations or when the root is not deep, but it may not be effective for larger infestations.
3. **Burning**: Burning is effective for small infestations, but it may not be effective for larger infestations.
4. **High-impact water spraying**: High-impact water spraying is effective for small infestations, but it may not be effective for larger infestations.
Previously, government funded programs provided control through mechanical or biological means. However, these methods proved to be expensive and labor-intensive. The National Blackberry Action Group (NEBAG) was established to address the impacts of blackberry on agricultural productivity and biodiversity in the region. The group aimed to develop a community-based approach to blackberry control and promote awareness of the issue. NEBAG was funded by the state government to develop a project action plan and implement it over six years.

The group successfully lobbied funding from the state government to fund their program. This funding allowed the group to develop a project action plan and implement it over six years. The group developed a project action plan that involved developing a community-led approach to blackberry control and promoting awareness of the issue. The group also received spray subsidies but did not carry out any spraying. However, the group continued to work on the project and successfully lobbied for funding from the state government to continue the project.

The Blackberry Action Group is one example of how community-led approaches can be successful in controlling blackberry. NEBAG has been able to gradually bring community members on board and therefore hold little responsibility for the wider community being a catalyst for success. The group has been successful in lobbying for funding from the state government to continue the project.

The Blackberry Action Group (NEBAG) was established to address the impacts of blackberry on agricultural productivity and biodiversity in the region. The group aimed to develop a community-based approach to blackberry control and promote awareness of the issue. NEBAG was funded by the state government to develop a project action plan and implement it over six years. The group developed a project action plan that involved developing a community-led approach to blackberry control and promoting awareness of the issue. The group also received spray subsidies but did not carry out any spraying. However, the group continued to work on the project and successfully lobbied for funding from the state government to continue the project.
Community-led action for long term blackberry control

Community members working together to control blackberry across a local area is a Blackberry Action Group is an example of how this can be achieved.

The North East Blackberry Action Group (NEBAG) was formed in 2003 as a way to coordinate and fast-track the eradication of blackberry in the north east of Victoria. The group was formed following the community meeting of stakeholders was convened by the state government to fund their program. This included the establishment of a project officer for a year who establishes blackberry zones in line with the community’s expectations.

A project manager group, which includes land managers from state, federal, local government and community groups, meets on a regular basis to plan for the implementation of the project.

The NEBAG has the following objectives:

- To develop a community-led approach to the control of blackberry
- To identify the most effective methods of controlling blackberry
- To develop a long-term plan for the control of blackberry
- To involve everybody, and blackberry doesn’t stop at fence lines.
- To provide an example of how this can be achieved.

• A community-led approach is appropriate because it:
 - Is participatory and blackberry doesn’t stop at fence lines.
 - Is a variety of socio-economic factors inhibiting its control, and these can be negotiated between the community and the diversity of the landholder.
 - involves everybody, and blackberry doesn’t stop at fence lines.
 - A community-led approach is appropriate because it:
 - Is participatory and blackberry doesn’t stop at fence lines.
 - Is a variety of socio-economic factors inhibiting its control, and these can be negotiated between the community and the diversity of the landholder.

References and further information

Leaf characteristics of R. fruticosus agg. and North American Rubus species in Australia.

Quick reference guide - distinguishing between the different groups of blackberry

Leaf characteristics of R. fruticosus agg. and North American Rubus species in Australia.

Blackberry – A Weed of National Significance

Blackberry belonging to the Rubus genus and the Rubus fruticosus agg. is a Weed of National Significance (WNS) in Australia because of the extent of its negative impacts. First introduced to Australia in the 1880s, Rubus fruticosus agg. is now widespread throughout Australia, especially in southern Queensland to southern Tasmanian and coastal Victoria. Originally an eastern European species, the Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species. The Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species. The Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species. The Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species. The Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species. The Rubus genus comprises more than 70 species of shrubs and climbers belonging to the Rosaceae family. The deep red to pink flowers are a major commercial value such as raspberry, strawberries, chicory and other species.

This brochure has been developed as a summary of the National Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria. This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria.

The following information is provided in this publication as an overview of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

The following information is provided in this publication as an overview of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

The following information is provided in this publication as an overview of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.

This publication has been produced in collaboration with the Victorian Department of Primary Industries. It is part of the Blackberry Control Manual (NDBC) of the Department of Primary Industries, Victoria. The manual provides a comprehensive guide to the control of blackberry in Victoria.